Nasz świat jest wyjątkowy pod tym względem, że żywe organizmy potrafią szybko i precyzyjnie przechodzić złożone reakcje chemiczne i ustawiać je w jedną sekwencję. Ale w jaki sposób niezbędne dla życia białka skutecznie przyspieszają te reakcje? Naukowcy z Francji dostarczają nowych informacji o tym, jak tak naprawdę funkcjonują enzymy. Wyniki badań zaprezentowano w czasopiśmie PLoS Biology.
Eksperci z Institut des Sciences du Végétal (IVS) przy Centre National de la Recherche Scientifique (CNRS) we Francji, we współpracy z kolegami z Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC) oraz Laboratoire de Cristallographie et RMN Biologique, przeanalizowali wiązanie związku chemicznego o terapeutycznych właściwościach z jego biologicznym celem.
Twierdzą, że specyficzne makromolekuły katalizują reakcje biochemiczne i mogą być wykorzystywane wielokrotnie. Powstaje jednak pytanie, czy białka te mogą przyspieszać reakcje. Stan wiedzy na dzisiaj jest taki, że enzym musi najpierw rozpoznać substrat, który następnie wchodzi w kontakt z pewnymi, specyficznymi dla niego, grupami chemicznymi, po czym ulega przekształceniu. Substrat jest wówczas przychylnie traktowany przez powstałe środowisko chemiczne i dołączany do odkształceń grup molekularnych, które są sobie fizycznie bliskie w przestrzeni.
Molekularny zespół osiąga zatem efemeryczny stan, który jest wysoce reaktywny. Eksperci definiują go jako "stan przejściowy". W wyniku tego procesu następuje przyspieszenie reakcji biochemicznej o kilkaset miliardów razy.
Wyniki badań przeprowadzonych w latach 50. XX w. ujawniły model "wzbudzonego dopasowania", w którym substrat brał udział w zmianie formy enzymu. Tutaj mały związek chemiczny początkowo wchodzi w reakcję z enzymem a ta interakcja wywołuje konformacyjną zmianę makromolekuły, co z kolei umożliwia przekształcenie substratu.
W ramach ostatnich badań naukowcy wykorzystali terapeutyczny enzym docelowy, badając niewielki związek chemiczny symulujący substrat, który mógłby związać się ściśle z enzymem, blokujący jego aktywność i ujawniający właściwości antybiotyczne, przeciwnowotworowe i herbicydowe.
Zespół twierdzi, że etap "wzbudzonego dopasowania" jest wymagany do zapewnienia skutecznego wiązania związku chemicznego z docelowym enzymem. W skrócie, to niewielki związek chemiczny powoduje modyfikację konformacyjną po przyłączeniu się do enzymu.
Wywodząc rozkład drobnej struktury tego enzymu na podstawie rośliny Arabidopsis thaliana, naukowcy z powodzeniem zilustrowali interakcje i konformacje każdego enzymu i substratu na poszczególnych etapach reakcji.
Powstaje wiązanie wodorowe, stabilizujące kompleks enzym-substrat w stanie przejściowym. To umożliwia skuteczne przeprowadzenie reakcji enzymatycznej hydrolizy.
Naukowcy twierdzą, że dzięki uzyskanym przez nich wynikom model można wykorzystywać do wszystkich form enzymu, zwłaszcza tych występujących w bakteriach, które są celem antybiotyków. Dane pokazują również mechanizm wiązania molekuły terapeutycznej z celem, "odczepiania" jej od niego i rozszerzania w ten sposób oddziaływania leku poza samo leczenie - twierdzą naukowcy.
Wyniki tych badań mogą wesprzeć naukowców w staraniach nad opracowaniem lub udoskonaleniem farmakologicznych właściwości kandydatów na leki.
© Unia Europejska 2005-2011
Źródło: CORDIS
Referencje dokumentu: Fieulaine, S., et al. (2011) Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis. PLoS Biology. DOI:10.1371/journal.pbio.1001066. |