Racjonalista - Strona głównaDo treści


Fundusz Racjonalisty

Wesprzyj nas..
Zarejestrowaliśmy
205.015.042 wizyty
Ponad 1064 autorów napisało dla nas 7362 tekstów. Zajęłyby one 29015 stron A4

Wyszukaj na stronach:

Kryteria szczegółowe

Najnowsze strony..
Archiwum streszczeń..

 Czy Rosja użyje taktycznej broni nuklearnej?
Raczej tak
Chyba tak
Nie wiem
Chyba nie
Raczej nie
  

Oddano 15 głosów.
Chcesz wiedzieć więcej?
Zamów dobrą książkę.
Propozycje Racjonalisty:

Złota myśl Racjonalisty:
"Religia jest jak robaczek świętojański, potrzebuje ciemności, żeby błyszczeć"

Dodaj swój komentarz…
RavKo - Zad. 1
W treści zadania jest: wyznaczyć wszystkie funkcje, spełniające podany warunek.
Niżej mamy:
f(-x) = f(x2 - x) - xf(x), co jest prawdą dla funkcji liniowych, a nie dla wszystkich.
Powinien być chyba jeszcze dowód, że innych funkcji poza f-cjami typu f(x)=a*x nie ma, bądź znaleźć je.
Autor: RavKo Dodano: 22-09-2004
Reklama
occulkot
Ja wszystko rozumiem - sam dzisiaj mialem egzamin poprawkowy z matematyki dyskretnej. Ja na prawde rozumiem ze wiekszosc matematykow to ludzie myslacy ktorzy poznaja swiad na zasadzie doswiadczen - ale jaki zwiazek maja funkcje z racjonalizmem?!?!!?!?!
Autor: occulkot Dodano: 30-09-2004
Piotrek - mylisz się, Ravko
RavKo, ponieważ swój komentarz umieściłeś tu ponad rok temu, prawdopodobnie i tak nie przeczytasz tego, co tu napisałem, ale muszę zauważyć, że niestety nie masz racji-najwyraźniej nie zrozumiałeś rozumowania przedstawionego w rozwiązaniu zadania. Twierdzisz, że na początku rozwiązania autor powołuje się na równość, która już z góry może być prawdziwa tylko dla funkcji liniowych (czyli że zakłada, iż funkcja f musi być liniowa), a to nieprawda-równość:

f(-x)=f(x^2-x)-xf(x)

jest prawdziwa dla wszystkich funkcji spełniających warunek podany na początku zadania (co prawda okazuje się, że rzeczywiście ta zależność może mieć miejsce tylko dla niektórych funkcji liniowych, ale autor to udowadnia-nie zgaduje tego ani nie zakłada na początku. Oto dlaczego autor powołał się na tę równość. Na początku wiemy, że szukane są wszystkie funkcje f:Q->Q spełniające warunek:

f(x^2+y)=xf(x)+f(y) dla każdej pary liczb wymiernych x,y.

Stąd równoważnie f(y)=f(x^2+y)-xf(x)

Wiemy jednak, że ta równość ma zachodzić dla dowolnej pary liczb wymiernych x,y , więc w szczególności również dla y=-x , gdzie x jest liczbą wymierną. Podstawiając w powyższej równości
y=-x dostaliśmy to, co autor:

f(-x)=f(x^2-x)-xf(x)

Jak widać nigdzie nie zakładaliśmy niczego, co nie wynikałoby z treści zadania, a już tym bardziej tego, że f jest funkcją liniową. Z dowodem jest więc wszystko ok-autor pokazał, że funkcja spełniająca początkowe równanie musi być postaci
f(x)=ax dla x wymiernych, gdzie a jest dowolną stałą wymierną (implikacja w jedną stronę) i że każda funkcja tej postaci spełnia to równanie (implikacja w drugą stronę wynika z trywialnego wstawienia funkcji f(x)=ax z wspomnianymi wcześniej warunkami na x i a do obu stron początkowego równania i zauważeniu, że otrzymujemy tożsamość.
Autor: Piotrek Dodano: 30-10-2005
Matematyczny
Do zapisywania formuł matematycznych przydałby się jakiś edytor latex...
Autor: Matematyczny  Dodano: 27-03-2015

Pokazuj komentarze od najnowszego

Aby dodać komentarz, należy się zalogować

  

Zaloguj przez OpenID..
Jeżeli nie jesteś zarejestrowany/a - załóż konto..

Reklama
[ Regulamin publikacji ] [ Bannery ] [ Mapa portalu ] [ Reklama ] [ Sklep ] [ Zarejestruj się ] [ Kontakt ]
Racjonalista © Copyright 2000-2018 (e-mail: redakcja | administrator)
Fundacja Wolnej Myśli, konto bankowe 101140 2017 0000 4002 1048 6365